Embeddings
Transform your text into powerful vector representations! Embeddings let you add semantic search, recommendation systems, and other advanced natural language features to your applications.
Quick Start
Here's how to generate an embedding with just a few lines of code:
use PrismPHP\Prism\Prism;
use PrismPHP\Prism\Enums\Provider;
$response = Prism::embeddings()
->using(Provider::OpenAI, 'text-embedding-3-large')
->fromInput('Your text goes here')
->generate();
// Get your embeddings vector
$embeddings = $response->embeddings[0]->embedding;
// Check token usage
echo $response->usage->tokens;
Generating multiple embeddings
You can generate multiple embeddings at once with all providers that support embeddings, other than Gemini:
use PrismPHP\Prism\Prism;
use PrismPHP\Prism\Enums\Provider;
$response = Prism::embeddings()
->using(Provider::OpenAI, 'text-embedding-3-large')
// First embedding
->fromInput('Your text goes here')
// Second embedding
->fromInput('Your second text goes here')
// Third and fourth embeddings
->fromArray([
'Third',
'Fourth'
])
->generate();
/** @var Embedding $embedding */
foreach ($embeddings as $embedding) {
// Do something with your embeddings
$embedding->embedding;
}
// Check token usage
echo $response->usage->tokens;
Input Methods
You've got two convenient ways to feed text into the embeddings generator:
Direct Text Input
use PrismPHP\Prism\Prism;
use PrismPHP\Prism\Enums\Provider;
$response = Prism::embeddings()
->using(Provider::OpenAI, 'text-embedding-3-large')
->fromInput('Analyze this text')
->generate();
From File
Need to analyze a larger document? No problem:
use PrismPHP\Prism\Prism;
use PrismPHP\Prism\Enums\Provider;
$response = Prism::embeddings()
->using(Provider::OpenAI, 'text-embedding-3-large')
->fromFile('/path/to/your/document.txt')
->generate();
NOTE
Make sure your file exists and is readable. The generator will throw a helpful PrismException
if there's any issue accessing the file.
Common Settings
Just like with text generation, you can fine-tune your embeddings requests:
use PrismPHP\Prism\Prism;
use PrismPHP\Prism\Enums\Provider;
$response = Prism::embeddings()
->using(Provider::OpenAI, 'text-embedding-3-large')
->fromInput('Your text here')
->withClientOptions(['timeout' => 30]) // Adjust request timeout
->withClientRetry(3, 100) // Add automatic retries
->generate();
Response Handling
The embeddings response gives you everything you need:
namespace PrismPHP\Prism\ValueObjects\Embedding;
// Get an array of Embedding value objects
$embeddings = $response->embeddings;
// Just get first embedding
$firstVectorSet = $embeddings[0]->embedding;
// Loop over all embeddings
/** @var Embedding $embedding */
foreach ($embeddings as $embedding) {
$vectorSet = $embedding->embedding;
}
// Check token usage
$tokenCount = $response->usage->tokens;
Error Handling
Always handle potential errors gracefully:
use PrismPHP\Prism\Prism;
use PrismPHP\Prism\Enums\Provider;
use PrismPHP\Prism\Exceptions\PrismException;
try {
$response = Prism::embeddings()
->using(Provider::OpenAI, 'text-embedding-3-large')
->fromInput('Your text here')
->generate();
} catch (PrismException $e) {
Log::error('Embeddings generation failed:', [
'error' => $e->getMessage()
]);
}
Pro Tips 🌟
Vector Storage: Consider using a vector database like Milvus, Qdrant, or pgvector to store and query your embeddings efficiently.
Text Preprocessing: For best results, clean and normalize your text before generating embeddings. This might include:
- Removing unnecessary whitespace
- Converting to lowercase
- Removing special characters
- Handling Unicode normalization
IMPORTANT
Different providers and models produce vectors of different dimensions. Always check your provider's documentation for specific details about the embedding model you're using.